$\mathcal{N}_{\varepsilon \omega} \mathscr{I}_{\varepsilon \tau 1 \varepsilon y} S_{\varepsilon m i-C o n d u c t o r} \mathfrak{P}_{\text {roduct }}, \mathscr{I}_{n c}$.

- GOLD METALLIzATION
- DIFFUSED EMITTER BALLASTING
- INTERNAL INPUT/OUTPUT MATCHING
- COMMON EMITTER CONFIGURATION
- DESIGNED FOR LINEAR OPERATION HIGH SATURATED POWER CAPABILITY 26 VOLT 900 MHz PERFORMANCE
Pout $=150 \mathrm{~W}$ MIN.
GAIN $=8.5 \mathrm{~dB}$ MIN.
$\mathrm{IMD}_{3}=-28 \mathrm{~dB}$ MAX. @ Pout $=150 \mathrm{~W}$ PEP
INHERENT RUGGEDNESS:
LOAD MISMATCH TOLERANCE OF
5:1 MIN. VSWR
3 dB OVERDRIVE CAPABILITY

DESCRIPTION

The SD4590 is designed for both analog and digital cellular base stations over the 800 to 960 MHz frequency range, specifically those systems requiring the high linearity and efficiency afforded by class AB operation. Integrated input/output pre-matching simplifies amplifier design. Ruggedness, MTTF, and linearity are enhanced using diffused emitter resistors and refractory/gold metallization.

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\text {case }}=25^{\circ} \mathrm{C}$)

Symbol	Parameter	Value	Unit
$V_{\text {CBO }}$	Collector-Base Voltage	65	V
$\mathrm{~V}_{\text {CEO }}$	Collector-Emitter Voltage	28	V
$\mathrm{~V}_{\text {EBO }}$	Emitter-Base Voltage	3.5	V
I_{C}	Device Current	25	A
PDIsS	Power Dissipation	300	W
$\mathrm{~T}_{\mathrm{j}}$	Max. Operating Junction Temperature	200	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-65 to 150	${ }^{\circ} \mathrm{C}$

THERMAL DATA

$\mathrm{R}_{\mathrm{th}(\mathrm{j}-\mathrm{c})}$	Junction-Case Thermal Resistance	0.60	${ }^{\circ} \mathrm{C} / \mathrm{W}$

NJ Semi-Conductors reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However, NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders.

ELECTRICAL SPECIFICATION ($\mathrm{T}_{\text {case }}=25^{\circ} \mathrm{C}$)

STATIC

Symbol		Parameter	Min.	Typ.	Max.	Unit
BV CbO	$\mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}$	$V_{B E}=0 \mathrm{~V}$	65	80		V
BVCEO	$\mathrm{I}_{\mathrm{c}}=100 \mathrm{~mA}$	$\mathrm{I}_{\mathrm{B}}=0 \mathrm{~mA}$	28	30		V
BVCer	$I C=100 \mathrm{~mA}$	$\mathrm{R}_{\mathrm{BE}}=80 \Omega$	33	40		\checkmark
BVebo	$\mathrm{I}_{\mathrm{C}}=50 \mathrm{~mA}$	$\mathrm{lc}_{\mathrm{c}}=0 \mathrm{~mA}$	3.5	4.0		V
ICEO	$V_{C E}=26 \mathrm{~V}$	$V_{B E}=0 \mathrm{~V}$			10	mA
ICEO	$V_{C E}=10 \mathrm{~V}$	$V_{B E}=0 \mathrm{~V}$			0.5	mA
lebo	$V_{B E}=1 \mathrm{~V}$	$V_{\text {CE }}=0 \mathrm{~V}$			0.1	mA
lebo	$V_{B E}=2.5 \mathrm{~V}$	$V_{\text {CE }}=0 \mathrm{~V}$			3	mA
hfe	$V_{C E}=5 \mathrm{~V}$	$\mathrm{lc}=6 \mathrm{~A}$	25	45	120	

TESTED PER SIDE

DYNAMIC

Symbol	Parameter	Min.	Typ.	Max.	Unit
C_{OB}	$\mathrm{f}=1 \mathrm{MHz}$ for information only - this part is collector matched		75		pF

DYNAMIC (CW)

Symbol	Parameter			Min.	Typ.	Max.	Unit
Pin	$\mathrm{f}=900 \mathrm{MHz} \mathrm{V}_{\mathrm{CE}}=26 \mathrm{~V}$	$\mathrm{I}_{\mathrm{CQ}}=2 \times 200 \mathrm{~mA}$	Pout $=150 \mathrm{~W}$			21	W
Pout	$f=900 \mathrm{MHz} \quad V_{C E}=26 \mathrm{~V}$	$1 \mathrm{CQ}=2 \times 200 \mathrm{~mA}$	$\mathrm{P}_{\text {IN }}=21 \mathrm{~W}$	150	175		W
GP_{P}	$f=900 \mathrm{MHz} \mathrm{V}_{\text {ce }}=26 \mathrm{~V}$	$\mathrm{ICQ}^{\text {a }}$ 2 $\times 200 \mathrm{~mA}$	$P_{\text {OUT }}=150 \mathrm{~W}$	8.5	9.5		dB
nc	$f=900 \mathrm{MHz} \quad V_{C E}=26 \mathrm{~V}$	$\mathrm{I}_{\mathrm{CQ}}=2 \times 200 \mathrm{~mA}$	POUT $=150 \mathrm{~W}$	50	55		\%
$\mathrm{P}_{1 d \mathrm{~B}}$	$\mathrm{f}=900 \mathrm{MHz} \quad \mathrm{V}_{\text {CE }}=26 \mathrm{~V}$	$\mathrm{I}_{\mathrm{CQ}}=2 \times 200 \mathrm{~mA}$		150	160		W
OVD	$\begin{aligned} & \mathrm{f}=900 \mathrm{MHz} \quad \mathrm{~V}_{\mathrm{CE}}=26 \mathrm{~V} \\ & \text { Set PoUT }=150 \mathrm{~W} \text { PEP; Ir } \end{aligned}$	$\begin{aligned} & I_{C Q}=2 \times 200 \mathrm{~mA} \\ & \text { ease } \mathrm{P}_{\mathrm{IN}} 3 \mathrm{~dB} \end{aligned}$			egrata Perfo		

DYNAMIC (Two-Tone)

Symbol	Parameter	Min.	Typ.	Max.	Unit
${ }^{*} \mathrm{GP}$	$V_{C E}=26 \mathrm{~V} \quad \mathrm{I}_{\text {CQ }}=2 \times 200 \mathrm{~mA} \quad$ POUT $=150 \mathrm{~W}$ PEP	8.5	9.5		dB
${ }^{*} \eta_{\mathrm{c}}$	$V_{C E}=26 \mathrm{~V} \quad \mathrm{ICQ}^{\text {C }}=2 \times 200 \mathrm{~mA} \quad$ POUT $=150 \mathrm{~W} P E P$	30	35		\%
${ }^{*} \mathrm{MD}_{3}$	$V_{C E}=26 \mathrm{~V} \quad \mathrm{I}_{\text {CQ }}=2 \times 200 \mathrm{~mA} \quad \mathrm{P}_{\text {OUT }}=150 \mathrm{~W}$ PEP		-32	-28	dBT
*Load Mismatch	VSWR = 5:1 MIN @ All Phase Angles	No Degratation in Device Performance			
*OVD	$\begin{aligned} & V_{\text {CE }}=26 \mathrm{~V} \quad I_{\mathrm{CQ}}=2 \times 200 \mathrm{~mA} \\ & \text { Set POUT }=150 \mathrm{~W} \text { PEP; Increase } P_{\text {IN }} 3 \mathrm{~dB} \end{aligned}$	No Degratation in Device Performance			

Note : $\mathrm{f}_{1}=900.00 \mathrm{MHz}$
$\mathrm{f}_{2}=900.10 \mathrm{MHz}$

DIM.	mm			Inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A	5.59		5.84	.200		.230
B		5.33			.210	
C	3.05		3.30	.120		.130
D	9.65		9.91	.380		.390
E	19.81		20.83	.780		.820
F		11.05			.435	
G		27.94			1.100	
H	33.91		34.16	1.335		1.345
I	0.08		0.18	.003		.007
J	1.52		1.78	.060		.070
K	2.08		2.54	.082		.100
L			5.21			.205
M	10.03		10.34	.395		.407
N	21.59		22.10	.850		.870

